3.156 \(\int (a+a \sec (e+f x))^{3/2} (c+d \sec (e+f x)) \, dx\)

Optimal. Leaf size=105 \[ \frac{2 a^2 (3 c+4 d) \tan (e+f x)}{3 f \sqrt{a \sec (e+f x)+a}}+\frac{2 a^{3/2} c \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{f}+\frac{2 a d \tan (e+f x) \sqrt{a \sec (e+f x)+a}}{3 f} \]

[Out]

(2*a^(3/2)*c*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/f + (2*a^2*(3*c + 4*d)*Tan[e + f*x])/(3*
f*Sqrt[a + a*Sec[e + f*x]]) + (2*a*d*Sqrt[a + a*Sec[e + f*x]]*Tan[e + f*x])/(3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.150098, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3917, 3915, 3774, 203, 3792} \[ \frac{2 a^2 (3 c+4 d) \tan (e+f x)}{3 f \sqrt{a \sec (e+f x)+a}}+\frac{2 a^{3/2} c \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{f}+\frac{2 a d \tan (e+f x) \sqrt{a \sec (e+f x)+a}}{3 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[e + f*x])^(3/2)*(c + d*Sec[e + f*x]),x]

[Out]

(2*a^(3/2)*c*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/f + (2*a^2*(3*c + 4*d)*Tan[e + f*x])/(3*
f*Sqrt[a + a*Sec[e + f*x]]) + (2*a*d*Sqrt[a + a*Sec[e + f*x]]*Tan[e + f*x])/(3*f)

Rule 3917

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m
 + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Gt
Q[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3915

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, In
t[Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int (a+a \sec (e+f x))^{3/2} (c+d \sec (e+f x)) \, dx &=\frac{2 a d \sqrt{a+a \sec (e+f x)} \tan (e+f x)}{3 f}+\frac{2}{3} \int \sqrt{a+a \sec (e+f x)} \left (\frac{3 a c}{2}+\frac{1}{2} a (3 c+4 d) \sec (e+f x)\right ) \, dx\\ &=\frac{2 a d \sqrt{a+a \sec (e+f x)} \tan (e+f x)}{3 f}+(a c) \int \sqrt{a+a \sec (e+f x)} \, dx+\frac{1}{3} (a (3 c+4 d)) \int \sec (e+f x) \sqrt{a+a \sec (e+f x)} \, dx\\ &=\frac{2 a^2 (3 c+4 d) \tan (e+f x)}{3 f \sqrt{a+a \sec (e+f x)}}+\frac{2 a d \sqrt{a+a \sec (e+f x)} \tan (e+f x)}{3 f}-\frac{\left (2 a^2 c\right ) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}\\ &=\frac{2 a^{3/2} c \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{f}+\frac{2 a^2 (3 c+4 d) \tan (e+f x)}{3 f \sqrt{a+a \sec (e+f x)}}+\frac{2 a d \sqrt{a+a \sec (e+f x)} \tan (e+f x)}{3 f}\\ \end{align*}

Mathematica [A]  time = 0.561776, size = 102, normalized size = 0.97 \[ \frac{a \sec \left (\frac{1}{2} (e+f x)\right ) \sec (e+f x) \sqrt{a (\sec (e+f x)+1)} \left (2 \sin \left (\frac{1}{2} (e+f x)\right ) ((3 c+5 d) \cos (e+f x)+d)+3 \sqrt{2} c \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (e+f x)\right )\right ) \cos ^{\frac{3}{2}}(e+f x)\right )}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[e + f*x])^(3/2)*(c + d*Sec[e + f*x]),x]

[Out]

(a*Sec[(e + f*x)/2]*Sec[e + f*x]*Sqrt[a*(1 + Sec[e + f*x])]*(3*Sqrt[2]*c*ArcSin[Sqrt[2]*Sin[(e + f*x)/2]]*Cos[
e + f*x]^(3/2) + 2*(d + (3*c + 5*d)*Cos[e + f*x])*Sin[(e + f*x)/2]))/(3*f)

________________________________________________________________________________________

Maple [B]  time = 0.229, size = 237, normalized size = 2.3 \begin{align*}{\frac{a}{6\,f\cos \left ( fx+e \right ) \sin \left ( fx+e \right ) }\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}} \left ( 3\,\sqrt{2}\sin \left ( fx+e \right ) \cos \left ( fx+e \right ){\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) }\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}} \right ) \left ( -2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }} \right ) ^{3/2}c+3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) }\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}} \right ) \left ( -2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }} \right ) ^{3/2}c\sin \left ( fx+e \right ) -12\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}c-20\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}d+12\,c\cos \left ( fx+e \right ) +16\,d\cos \left ( fx+e \right ) +4\,d \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(3/2)*(c+d*sec(f*x+e)),x)

[Out]

1/6/f*a*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)*(3*2^(1/2)*sin(f*x+e)*cos(f*x+e)*arctanh(1/2*2^(1/2)*(-2*cos(f*x
+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)/cos(f*x+e))*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(3/2)*c+3*2^(1/2)*arctanh(1/2*
2^(1/2)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)/cos(f*x+e))*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(3/2)*c*sin
(f*x+e)-12*cos(f*x+e)^2*c-20*cos(f*x+e)^2*d+12*c*cos(f*x+e)+16*d*cos(f*x+e)+4*d)/cos(f*x+e)/sin(f*x+e)

________________________________________________________________________________________

Maxima [B]  time = 1.90324, size = 1347, normalized size = 12.83 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)*(c+d*sec(f*x+e)),x, algorithm="maxima")

[Out]

1/2*((a*arctan2((cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*(cos(1/2*arctan2(sin(
2*f*x + 2*e), cos(2*f*x + 2*e)))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)) - cos(1/2*arctan2(si
n(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))), (cos(2*f*x + 2*e
)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) +
 1))*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)
 + 1))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))) + 1) - a*arctan2((cos(2*f*x + 2*e)^2 + sin(2*f*x
+ 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))*sin(1/2*arctan2
(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)) - cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))*sin(1/2*a
rctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))), (cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) +
1)^(1/4)*(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x
 + 2*e))) + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f
*x + 2*e)))) - 1) - a*arctan2((cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*sin(1/2
*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)), (cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*
e) + 1)^(1/4)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)) + 1) + a*arctan2((cos(2*f*x + 2*e)^2 +
sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)), (
cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(
2*f*x + 2*e) + 1)) - 1))*(cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*sqrt(a) + 4*
(a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)
)) - (a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - a)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x
+ 2*e) + 1)))*sqrt(a))*c/((cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)*f)

________________________________________________________________________________________

Fricas [A]  time = 1.20415, size = 819, normalized size = 7.8 \begin{align*} \left [\frac{3 \,{\left (a c \cos \left (f x + e\right )^{2} + a c \cos \left (f x + e\right )\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right ) + 2 \,{\left (a d +{\left (3 \, a c + 5 \, a d\right )} \cos \left (f x + e\right )\right )} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )}{3 \,{\left (f \cos \left (f x + e\right )^{2} + f \cos \left (f x + e\right )\right )}}, -\frac{2 \,{\left (3 \,{\left (a c \cos \left (f x + e\right )^{2} + a c \cos \left (f x + e\right )\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt{a} \sin \left (f x + e\right )}\right ) -{\left (a d +{\left (3 \, a c + 5 \, a d\right )} \cos \left (f x + e\right )\right )} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )\right )}}{3 \,{\left (f \cos \left (f x + e\right )^{2} + f \cos \left (f x + e\right )\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)*(c+d*sec(f*x+e)),x, algorithm="fricas")

[Out]

[1/3*(3*(a*c*cos(f*x + e)^2 + a*c*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x
+ e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)) + 2*(a*d + (3*a*c
+ 5*a*d)*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/(f*cos(f*x + e)^2 + f*cos(f*x + e
)), -2/3*(3*(a*c*cos(f*x + e)^2 + a*c*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos
(f*x + e)/(sqrt(a)*sin(f*x + e))) - (a*d + (3*a*c + 5*a*d)*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e
))*sin(f*x + e))/(f*cos(f*x + e)^2 + f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \left (\sec{\left (e + f x \right )} + 1\right )\right )^{\frac{3}{2}} \left (c + d \sec{\left (e + f x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(3/2)*(c+d*sec(f*x+e)),x)

[Out]

Integral((a*(sec(e + f*x) + 1))**(3/2)*(c + d*sec(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)*(c+d*sec(f*x+e)),x, algorithm="giac")

[Out]

Timed out